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SUMMARY 

Several explicit schemes are presented for triangular Po and PI finite elements. A first-order accurate 
upwind Po scheme is compared to a FLIC type method. A second-order accurate Richtmyer scheme is 
constructed. Applications are given for the Euler system of conservation laws in the 2-dimensional 
case. 

KEY WORDS Hyperbolic Conservation Equation Finite Elements 

INTRODUCTION 

In this paper we are dealing with finite element simulation of perfect fluid flows. The choice 
of finite element methods is interesting because it provides facilities in mesh generation 
around complex geometries. The flexibility and reliability of such an approach has now been 
proved by transonic simulations with a finite element full potential model.' 

Some explicit and low-order (first and second) accurate unsteady methods are presented 
here to solve the Euler equations. 

For the first-order case, Po approximations (constant by triangles) have been experimented 
with; the comparison between the number of degrees of freedom and the cost of computa- 
tion is particularly favourable to this choice. Unfortunately, a general stability analysis seems 
non-trivial. 

For the second order case, a P ,  (continuous, linear by triangles) approximation is used to 
construct a two-dimensional two-step Richtmyer scheme. Linear stability is studied in the 
scalar case by the energy approach. 

UPWIND METHOD FOR F.E.M. 
The equations 

The basic equations for two-dimensional inviscid compressible flows are described as follows: 

where 

aw a a -+ - F( W) + - G( W) = 0 
at ax aY 
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and 
p = 0 4 e  -$p(u2+ u2)l 

p is the density, p is the pressure, e is the total energy, u and ZJ are the components of the 
velocity V. 

We may write (1) and (2a) as 

aw a a -+ div [ H (  W)V] = -- Fl( W) -- G,( W) 
at ax aY 

(3) 

where 

Definition of the scheme 

As usual we consider a triangulation r h  of a polygon o h  which approximates the domain 
of integration of (1) (see for example Reference 2). From r h  we derive a space V,, of 

functions which are constant on each triangle; the set {mT}T,g, is a basis of vh: 

1 i f x E T  
0 elsewhere 

TT(x) = 

Multiplying (3) by mT and integrating by parts we get, for each triangle T 

jI ?dxdy+[= H(W)V.ndm= - [ F , ( W ) n , + G , ( W ) ~ ] d a  LT 

( 5 )  

where aT and n = (nx, n,,) denote, respectively, the boundary of the element T and the 
(outward pointing) normal vector. 

Using the Po discretization we get 

where the superscript n indicates the time level t = n At (At is the time increment), the 
sum c' is taken over the three sides cii of T, Tij denotes the neighbouring triangle of T along 
the side cii, nii*T = (n>=, n:') is the normal vector to side cij outward from T, and 

The upwinding coefficient x: indicates the element which, between T and Tii is upstream. 
Wall (or profile) boundary conditions are simply implemented by computing boundary 

fluxes with only the pressure terms (using the vanishing of normal velocity); consistent Po 
interpolation is used for the pressure boundary values. 
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Inflow and outflow boundary conditions are taken into account by imposing all the values 
at infinity to variables along the boundaries; because of the upwinding, this means that the 
complete set of four conditions are imposed at inflow, and only the pressure at outflow. 

Numerical results 

The test presented is the calculation of the steady-state of a channel transonic flow past a 
circular bump: we chose a test problem proposed at the GAMM workshop held in 1979 at 
S t o ~ k h o l m ; ~  this problem has also been tested by Borrel and M ~ r i c e ; ~  the bump is a 4.2 per 
cent thick circular arc with length 1, and the canal is of height 2.073. Free stream values 
correspond to a Mach number of 0.85. 

For consistency with the GAMM test, we use a triangulation with 72 x 21 vertices, which 
gives 2840 triangles (=degrees of freedom); see Figure 1 .  

Figure 1. GAMM triangulation: 72x21 vertices 

Consistent (not local) time stepping is used, without any artificial damping, to obtain the 

With our method, after 5600 iterations corresponding to time T = 11.6 s, we have a root 
(Figures 2-4). For the Flic simulation 

steady state; convergence is measured from root mean square value of dpldt. 

mean square value of &/a?, RMS dp/d? :: 0.38 x 

Figure 2. GAMM channel with circular bump; isomach lines. (one step upwind method) 
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Figure 3. GAMM channel with circular bump; entropy distribution on the bottom (one step upwind method) 

described in References 5 and 6, 5600 iterations, T =  11.5 s correspond to RMS aplat = 
0 . 6 ~  We observed also that our upwind method is slightly cheaper for each iteration 
than the Flic method. Our scheme converges in a better manner than the Flic method, but, 
the results suggest that (Figure 12) the Flic scheme is less diffusive. 

Some PI variant (Vijayasundaram; unpublished work) of the scheme has been proved to 
be as expensive with the same number of triangles and much more diffusive. 

Figure 4. GAMM channel with circular bump; isentropic lines (increment A.9 = 0.001) (one step upwind method) 

A RICHTMYER SCHEME 

The scalar linear case 

Presentation of the scheme. We want to solve the following system 

1 aw aw aw -+V1-+V2-=0 inR2 
at  ax aY 

W X ,  0)  = WdX) 1 
where V -= ( V1, V2) is a constant given velocity. 

A classical explicit second-order two-level time discretization is the following 

W" + ( X) = W" (x) - At( V, + V2 w) 

Let X be a set of strictly positive parameters with zero in its closure and let ( Y h ) h &  be a 
family of triangulations such that h is the length of the largest segment of T h .  We consider 
the following spaces 

H,, = {u E L' (R~) ;  u is continuous; u is linear on every triangle r of r h }  

vh={UEHhnH1(R2)} 
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Then a Galerkin-type variational PI space discretization of (9) is 

Wc+'E Vh, and V V C v h  

[I(W;+l- W;)v dx dy = - A t  

a w; as  a~ 
2 ax aY ax a y  

+ ht2 j j (V, - + V, %)( v, - + V, -) dx dy 

where the sums JJ are taken on R2. 
Since the consistent mass matrix of this discretization is not diagonal, system (10) is 

expensive to solve in a bounded domain (and impossible to solve in this R2 case). Following, 
among others, Ushijima' and Baba and Tabata,* we construct the mass-lumped variant of 
(10) by introducing the following notations ( h  is fixed): 

(i) For any vertex A of T,,, the integration zone ff is defined by dividing the neighbouring 
triangles into six subtriangles with median lines; then the integration zone A is the union of 
those subtriangles which have A as a vertex (Figure 5). 

(ii) So is the approximation space of functions which are constant on each a: 
So = {u E L"(Rz), u 1 ~  = constant, VA vertex of T h }  

(iii) Yo is the trivial projection from Hh to So: 

V V E H h ,  YoVESo and 
Y o u l ~  = u(A), VA vertex of r h .  

Then the mass-lumped variant is 

W;+'E V,, and V U E v h  I 

2 ax aY ax av ay au) J a w; + t" I I (V, -+ V2 %) ( Vl - + V, - dx dy 

Figure 5 .  Construction of an integration zoneA around a vertex A 
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From the classical results of finite element methods, the right-hand side is second-order 
accurate; because of the mass-lumping, the left-hand side is only first-order accurate, except 
for very special regular meshes; see Reference 7 for a discussion of this point in a parabolic 
context. 

However, for nearly or strictly steady simulations (such as transonic ones), the weaker 
accuracy of the time derivative approximation has less importance. 

Let us study the stability of the scheme. 

Fourier analysis. For such an analysis, we consider the regular mesh g h  defined as follows: 
‘Seven point’ mesh: for ( i ,  j ) e Z 2 ,  the triangles of g h  are generated by (Ax = h/J2) :  

{ [ i  Ax,  j A x ] ,  [ ( i  + 1) Ax, (j + 1) A x ] ,  [ ( i  + 1) Ax, j Ax]} 

{[i Ax, j Ax], [ i  Ax, ( j  + 1) Ax], [(i + 1) Ax, ( j  + 1) Ax]}  

To this triangulation corresponds a seven point approximation (with a seven point cluster) 
which belongs to the finite difference family described by Lerat ([Reference 9, p. 71); by a 
numerical computation of the extrema of the corresponding amplification factor, we get the 
domain of stability described in Figure 6 ,  the boundary of which intersects the hexagon at 
points (0-5,0.5) and segments (-1 1x5-0.481,. . . , y = 1) and symmetric variants. 

and 

Such a diagram leads to the Courant condition 

but a more genera1 interpretation could be 

where A1 is the smallest altitude 
Courant condition). 

For a non-regular triangulation, 

from a given vertex in a neighbouring triangle (‘local’ 

(13b) is only a necessary condition; to obtain a sufficient 
one, we shall use an energy argument. 

Energy analysis. We shall establish an a priori L2 estimate for the solution (W), 
uniformly with respect to the space increment h ;  for this purpose, we need some uniform 
assumptions concerning the triangulations: 

Figure 6.  Fourier stability analysis of the ‘seven point’ finite difference variant 
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The family ( T h )  of triangulation, h taking all the values in X, is assumed to satisfy 

(14) 
3K>O such that Vh E 2, V T E  F,,, 
the radii R(T) and r(T) of respectively circumscribed 
and inscribed circles for T satisfy 

SIK'>O such that Vh E 2, VT+ and T- 
belonging to F h  and having exactly one common 
side, we have 

I K'h 

Assumption (14) contains a very classical consistency one but seems not enough for 
stability; assumption (15) is quite restrictive as we shall see with the following example: we 
consider the above regular family (gh)  and the following mapping 

I area (T+) - area (T-) I area (T+) 

y:R'--+R' v(x,y)=(f(x),y) 
x if x10 

2x if x r O  

then ( r h )  = (?[$,,I) is a family of triangulations with the sides of the triangles suffering some 
discontinuous variation; (Yh) does not satisfy (15) (while (gh) does). 

Proposition. Under assumptions (14), (15), for a discrete initial-condition bounded as 
follows 

and for a bounded time interval [0, TI, there exist two real positive constants K1(K', N) and 
K,(K', N, T, IlVll) such that for any h in X, any A t  satisfying the Courant-type condition 

llvl At S K ,  x smallest length of Y,, (16) 

and for any positive integer n satisfying n A t  < T, we have 

Proof. Subscripts h are omitted; we start from (12) with u = Wn+l and use the identity 
(b - a ) b  = $[b'- a'+ (b - a),], together with the notation 

thus we obtain 

1 1 o = - 1 J lyoWn+l\z dx dy -- 2 2 2 
J 9 ' o ~ " \ 2  dx dy +: 11 ) 9 ' o ~ + 1  - Yo Wl' dx dy 

+ Jj(wn+l- W ) Z  dx dy + wz dx dy JJ 
+ A  11. At( V, a+ V, a)(W+l - W) dx dy +i 2 11 zz  dx d y  2 ax dy 
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Here we note that the fifth term vanishes; using the fact that medians cut a triangle into six 
subtriangles with equal areas, we may write the fourth term as follows 

introducing the notation 8 = W"" - W, we get 

~ I I ~ O W " " I ~  dx dy - jI15p.W"I' dx dy = - jizz dx d y  - 02 dx dy - 2 j I . e  dx dy - I 
(18a) 

with 

First step: computation of spatial deriuatiues. We need the following additional notations: 
(i) For two vertices i and j of a triangle T we denote by 

,,ii.T = ( n F T ,  n;.7) 

the normal vector to the side cii outward from T, and 

v $ =  length (c i i )  At(V,n2*T+ V2n:'? 

(ii) Furthermore, if k is either vertex i or vertex j ,  the notation O $ . k  denotes the 
subtriangle of T limited by two medians of T and half of the side cii which has k as a 
vertex (Figure 7). 

Then we may introduce the following function 

a : R 2 + R  

and the following relations are easy to verify: 

Lemma. (i) For any side cii of T,,, we have 

c &=O 
T=?:O and T" 

where the sum is taken over the two triangles having cii as a side. 

Figure I 
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(ii) For any triangle T of Y,, we have 
1 Y T - 0  i i -  

GI 

where the sum is taken over the three sides cii of tiangle T. 

zaYoOdxdy 0 
(iii) We have 

Second step. Courant condition. We need now the following condition, which defines K,: 

s u p  la( < 1 (22) 

It is interesting to  compare with conditions (13a) and (13b) with the seven point regular 
mesh; (22) might be roughly interpreted as 

which is three times more severe than (13a), but if we denote by Alf the length of the 
altitude of T passing by the opposite vertex to  c,, then (22) becomes 

which, for the seven point case gives 

However (23) is more interesting with non-regular triangulations, especially if we intend to 

Now, the proof in the sequel will be strongly simplified if we reinforce condition (22) as 
use some local time stepping. 0 

follows 
l a ( s 1 - E  a.e. inR2 (22') 

where E is an arbitrary small positive constant. 

Orientation. From (22) we get l + a  =[J(1 +a)p, and using (21) we have 

ISP, Wn+l(' dx d y - / / (Y0W 1' dx dy = - lY06(' dx dy - 1 1 lz 1' dx d y - S1 - S2 (25a) 

with 

1 S2 = 211./( 1 + a ) z ( l  - v )  J(1+ a)Yo6 dx dy 

where u is a function to  be defined in such a manner that (25) is presented as a perturbation 
of the regular mesh case: the first three terms of the right hand sum represent the regular 
mesh case: in this case the right-hand side is negative and then the norm JJ ~sP0W"I2 dx dy is 
non-increasing with index n, yielding a very strong stability result. 

The fourth term S2 is a remainder to be estimated to yield a (less strong) stability 
statement for the general case. 
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Third step: study of the regular pan S,. By the Cauchy-Schwarz inequality we get 

The first term is easily computed, noting that the function z is constant on each triangle: 

here the sum 1' is taken over the three sides c ,  of the triangle T and we used (20). 

( A  = vertex); therefore the following decomposition is allowed: 
Let us consider the second term: we note that .YoO is constant o n  each integration zone a 

I (1 + a)u2  I.YoO12 dx dy 
+ 51 D%. ,UD;'. , 

where the sum is taken over all the sides c , ~  of triangulation Y,,; T ,  and T- denote the two 
triangles having ci, as side. In each of the two integrals of the right hand, sP0O is constant, so 
that a simplification using (19) will be possible if u is chosen to be equal to  the function which 
satisfies the following equality: 

Summing up, the estimate for S, is 

and (25a) becomes 

Fourth step: study of the remainder S2.  From (25b) we have (using (a1 5 1) 

l ~ z l ~ 2 ~ 2 l l Z I l I I ~ o ~ l l  s u P l u J ( 1 + ~ ) - J ( 1 + ~ ) l  

The following estimate is trivial 

l I . Y o ~ l l ~ l l s p , W " + ' l l + l l ~ o ~ l l  
and since z is a linear combination of derivatives of W", we obtain 

6 IzI2Sp llw"1l2 IlVll' At2 

then it remains to  estimate the last factor of (28); now, using (22), (22'), (15) and (261, we see 
after some easy calculations that 

Sup I v J (  1 + U) - J (  1 + a)l I 
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(29) 

Fifth step: end of the proof and remarks. From (27) and (29), we have 

~ I ~ ~ ~ " ~ ' 1 1 z - I l ~ o ~ 1 1 2 ~ ~ t  const (K'' IlVll)[ll~0.cT.1+~~~+II~~.cT.1lll 

from which we derive the strong stability in the sense of Richtmyer and Morton:" 

Il%.cT.1+Y +const (K ' ,  IlVll) At1 IIY0W"II 
s e x p  [ n  At const (K', IlVll)] I\Yovll 

and thus we get (17). 0 
Remark 1. In accordance with Lax's equivalence principle, since both the continuous 

equations and the discrete scheme are linear, convergence and error estimates can be derived 
from the above stability study (replacing W" by the truncature error) and from the 
consistency assumption (14). 

Remark 2. Such explicit finite element stability analysis seems quite rare in the published 
papers; see however Desgraz and Lascaux's work" for a quadrilateral element. 

Extension to non-linear systems 

The extension to systems is done by a two-step process of Richtmyer type; a choice is 
made between non-linearly different variants; boundary conditions will be treated either with 
boundary integrals, or via a different scheme. 

The system to be solved is written as 
W, + F( W),  + G(W), = 0 
+ boundary conditions 

where W(x, y; t )  is a vector of Rd. 
A natural adaptation of Richtmyer's method is to consider a Po (constant by triangle) 

predictor; similarly to Section 1, we use a control volume formulation for this Lax- 
Friedrichs' type first step. 

According to Lerat and Peyret's study," it is interesting to introduce the length of the first 
step as a parameter. Then the scheme is the following: 

Step 1: predictor 

V T E  Th7 and for k = 1 ,2 , .  . . d 

Step 2:  Corrector 

wt' E ( Vhjd, and v& E ( vhjd, -l Vk=1,2,  . . . ,  d 
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where 1 p2 = -. 
2a 

2a-1 
PI =7, 

and il is the domain of integration of (30). 
According to Lerat and Peyret’s one dimensional study, we chose the optimal length of the 

first step: 
J5 
2 

(y z= 1 +- 

some experiments with Burgers’ equation showed that this choice is advantageous, even for 
the computation of stationary shocks. 

Numerical integration is necessary to compute the nonlinear terms: 
(a) A rough quadrature is possible for the boundary integral in (31a) because it will be 

(b) A finer quadrature, exact for P2 integrands, is used for integrals with stars in (31b). 
The last integral of (31b) (boundary fluxes) is not time centred for simplicity; this is only 

first-order accurate in time; actually second-order spatial accuracy is conserved for steady 
state simulations. A slightly more expensive variant with a boundary predictor and time 
centred boundary fluxes has been experimented with, but this brought no noticeable 
improvements. 

Finally, simplified Lapidus type artificial viscosity terms are added for shock resolution, 
which is a discretization of 

multiplied by At2 in the resulting scheme. 

with the classical choice x = 0.8. 

Numerical experiments 

For transonic simulations, we had to construct inflow and outpow boundary conditions ; 
several extrapolation procedures have been experimented with which failed to  give a steady 
solution for non-regular meshes. 

Convergence has been obtained with the use of the following upwind scheme for boundary 
triangles: 

For any triangle T such that one vertex at least is inflow or outflow, fluxes between two 
vertices i and j are computed as integrals along segment CI,, of functions Fn, + G% (Figure 
8) where C is the centroid of triangle T and Ill the middle point of segment C,,. 

i 111 I 

Figure 8. Control volume type flux computation for boundary triangles 
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t 

Figure 9. GAh4M channel with a circular bump, isomach lines (Richtmyer scheme) 

Then two cases are considered for the integration of Fn, + G s :  
(i) First case: neither i nor j is on the inflow or outflow boundary: the flux through CIij is 

computed without using the values of dependant variables at the third vertex. 
(ii) Second case: vertex i is inflow (resp. outflow) and j is interior (or vice versa): if i is 

inflow, then it is upstream and j is downstream; if i is outflow, it is downstream and j is 
upstream; following Lerat and Sides,13 fluxes are computed by using upstream values 
of the entropy deviation S 

the enthalpy 
s = (P/Pm)(Pm/P>’  - 1 

and the direction of the flow, and using the downstream value of the pressure p. 
Summing up, all the four condition at infinity are imposed on inflow and outflow vertices, 

but only the convenient quantities (three inflow and one outflow) are taken into account by 
the upwind boundary scheme. 

GAMh4 channel with circular bump. The physical conditions are defined above and the 
triangulation is the same with 72x21 vertices (=degrees of freedom for each variable). 

In the results presented, for the sake of saving cpu time we used a global Courant number 
and forced the enthalpy 

H = - -  p + ; ( u 2 + v z )  
Y - - l  P 

to have its value at infinity. 

distributions on the bottom. 
We present in Figures 9-11 the isomach and isentropic lines and the entropy deviation 

Figure 10. GAMM channel with circular bump; isentropic lines (increment AS = 0.001) (Richtmyer scheme) 
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Figure 11. GAMh4 channel with circular bump; entropy distribution on the bottom (Richtmyer scheme) 

-1.0 4 KP 

I 

Figure 12. GAMh4 flow in a channel; comparison of K, distributions for (1) the one step upwind method, (2) the 
Flic method, (3) the Richtmyer scheme 

Sides- Lerat i++$ 
Richtmyer-Galerkin - 
(presented method) 

Figure 13. GAMM flow in a channel; comparison of K, distribution for (1) the Richtmyer scheme and (2) a 
MacCormack-type scheme by Lerat and Sides14 
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LERAT-SIDES upper wall * * -  - 
lowerwall +++ 

PRESENTEDMETHOD - 
Figure 14. GAMM test with a coarse (151 vertices) triangulation: comparison of K,, distribution of Richtmyer 

scheme with Lerat and Sides14 

With an artificial viscosity coefficient equal to 1, some oscillations remain before and after 
the shock. Results are in good agreement (see Figure 13) with simulations presented by 
Lerat and Sides,13.14 and especially with computations with b r a t ' s  seven point optimal S.l, 
scheme (see Reference 9, p. 97, Figure 9b) as could be expected since the scheme presented 
in this section is quite similar to the latter finite difference scheme. To observe convergence 
with respect to mesh spacing, a courser triangulation with only 11 nodes along the bump 
(instead of 41) has been used: a still good agreement is observed, except for the shock 
capturing, (see Figure 14). 

CONCLUSION 

Several explicit schemes for arbitrary finite element triangulations have been presented to 
solve Euler equations. 

The first-order scheme with convective-type upwinding for F.E.M. is very easy to use. 
Stationary simulations show shocks captured without oscillations. This scheme is rapidly 
convergent but quite diffusive. 

The second-order Richtmyer scheme is as accurate as several others second order 
schemes. Thanks to the presence o f  nodes on the boundaries, extrapolations are needed 
neither for computation nor for results along the profile. Lerat-type implicit extension (see 
Reference 9, Chap. 6) is possible. 

Several ameliorations are presently studied, such as more sophisticated boundary condi- 
tions and artificial viscosity, and higher order F.E.M. 
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